1. Due pencil and paper to answer the question.

Plot and label each point on the coordinate grid.

ANSWER:

2. Use pencil and paper to answer the question.

Write two fractions equivalent to $\frac{3}{4}$.

ANSWER: Sample answer: $\frac{6}{8}$, $\frac{9}{12}$

3. Due pencil and paper to answer the question.

For each fraction, write two equivalent fractions.

a.
$$\frac{1}{4}$$

b.
$$\frac{1}{6}$$

c.
$$\frac{4}{6}$$

ANSWER: Sample answers:

a.
$$\frac{2}{8}, \frac{3}{12}$$

b.
$$\frac{2}{12}, \frac{3}{18}$$

c.
$$\frac{2}{3}, \frac{8}{12}$$

4. Due pencil and paper to answer the question.

Write two fractions equivalent to $\frac{2}{16}$.

ANSWER: Sample answer: $\frac{1}{8}$, $\frac{3}{24}$

5. Write >, <, or = to make a true number sentence.

$$\frac{1}{8}$$
 — $\frac{1}{11}$

ANSWER: >

6. Write >, <, or = to make a true number sentence.

$$\frac{12}{16}$$
 $\frac{5}{16}$

ANSWER: >

7. Write >, <, or = to make a true number sentence.

$$\frac{3}{4}$$
 — $\frac{12}{16}$

ANSWER: =

8. Description Use pencil and paper to answer the question.

Write >, <, or = to make each number sentence true.

a.
$$\frac{1}{4}$$
 b. $\frac{4}{10}$ **c.** $\frac{15}{18}$ **.** $\frac{5}{6}$

c.
$$\frac{15}{18}$$
 — $\frac{5}{6}$

ANSWER:

9. Description use pencil and paper to answer the question.

Write the set of fractions in order from smallest to largest.

smallest

largest

ANSWER: $\frac{15}{100}$, $\frac{26}{100}$, $\frac{46}{100}$, $\frac{57}{100}$, $\frac{75}{100}$

10. Description Use pencil and paper to answer the question.

Write each set of fractions in order from smallest to largest.

a.
$$\frac{3}{8}$$
, $\frac{3}{100}$, $\frac{3}{10}$, $\frac{3}{4}$, $\frac{3}{5}$

smallest largest

b.
$$\frac{3}{8}$$
, $\frac{1}{8}$, $\frac{6}{8}$, $\frac{7}{8}$, $\frac{5}{8}$

smallest largest

ANSWER: **a.**
$$\frac{3}{100}$$
, $\frac{3}{10}$, $\frac{3}{8}$, $\frac{3}{5}$, $\frac{3}{4}$ **b.** $\frac{1}{8}$, $\frac{3}{8}$, $\frac{5}{8}$, $\frac{6}{8}$, $\frac{7}{8}$

11. If the yellow hexagon is the whole, what fraction of the whole is 1 red trapezoid?

ANSWER: 1/2

12. Due pencil and paper to answer the question.

Use pattern blocks to help solve the following problems.

If the yellow hexagon is the whole, what fraction of the whole is **b.** 1 red trapezoid? _____

a. 1 blue rhombus? _____ **b.** c. Suppose the blue rhombus is
$$\frac{2}{3}$$
 of the whole.

Which pattern block is 1 whole?

d. Suppose the green triangle is
$$\frac{1}{2}$$
 of the whole.

Which pattern block is 1 whole?

ANSWER:

a.
$$\frac{1}{3}$$

b.
$$\frac{1}{2}$$

- c. red trapezoid
- d. blue rhombus
- 13. Suppose the red trapezoid is $\frac{1}{2}$ of the whole.

Which pattern block is 1 whole? _____

- c. blue rhombus a. yellow hexagon b. green triangle

ANSWER: a

14. Description Use pencil and paper to answer the question.

Markus had 48 quarters. He spent $\frac{1}{6}$ of them on used books.

- a. How many quarters did he spend? _____ quarters
- **b.** How many quarters did he have left? _____ quarters
- **c.** How much money does he have left? \$.

ANSWER: **a.** 8 quarters; **b.** 40 quarters; **c.** \$10.00

15. A bag contains

- 3 blue blocks
- 5 green blocks
- 4 yellow blocks, and
- 1 purple block.

You put your hand in the bag and pull out a block.

About what fraction of the time would you expect to get a purple block? ______

ANSWER: 1/13

16. Multiply. Use a paper-and-pencil algorithm.

ANSWER: 1,519

1519

17. Due pencil and paper to answer the question.

Multiply. Use paper-and-pencil algorithms of your choice.

ANSWER:

a. 3,612

b. 1,504

18. Divide. Use a paper-and-pencil algorithm.

- a. 23 R1
- b. 23 R6 c. 23 d. 24

ANSWER: a

19. Divide. Use a paper-and-pencil algorithm.

- a. 73 R1
- b. 73 R4 c. 73 d. 74

ANSWER: a

20. Description uses 20. Use pencil and paper to answer the question.

Divide. Use paper-and-pencil algorithms of your choice.

ANSWER: **a.** 27 R1 or 27 $\frac{1}{6}$

b. 87 R1 or 87
$$\frac{1}{9}$$

21. Due pencil and paper to answer the question.

Which fraction is larger: $\frac{4}{5}$ or $\frac{6}{7}$?

Explain how you know.

ANSWER: $\frac{6}{7}$; Sample answer: $\frac{6}{7}$ is only $\frac{1}{7}$ away from 1, and $\frac{4}{5}$ is $\frac{1}{5}$ away from 1.

 $\frac{1}{7}$ is a smaller fraction than $\frac{1}{5}$, so $\frac{6}{7}$ is closer to 1 than $\frac{4}{5}$ is.

Also, $\frac{4}{5}$ is 0.8 and $\frac{6}{7}$ is about 0.86. 0.86 is greater than 0.8, so $\frac{6}{7}$ is greater than $\frac{4}{5}$.

22. Due pencil and paper to answer the question.

Make a spinner.

a. Color it so that a paper clip will land on yellow about $\frac{1}{6}$ of the time and on red about $\frac{1}{12}$ of the time. Color the rest blue.

b. About what fraction of the time should you expect the paper clip to land on blue?

ANSWER: a.

- **b.** I would expect the paper clip to land on blue about $\frac{3}{4}$ of the time.
- 23. Add. Use pattern blocks to help you.

$$\frac{2}{6} + \frac{1}{6} =$$

- a. $\frac{1}{2}$ b. $\frac{3}{12}$ c. $\frac{3}{7}$ d. $\frac{3}{13}$

ANSWER: a

24. Add. Use pattern blocks to help you.

$$\frac{1}{2} + \frac{1}{6} =$$

- a. $\frac{2}{3}$ b. $\frac{2}{8}$ c. $\frac{8}{8}$ 1 d. $\frac{2}{12}$

ANSWER: a

25. Subtract. Use pattern blocks to help you.

$$\frac{4}{6} - \frac{3}{6} =$$

ANSWER: 1/6 or an equivalent fraction

26. Due pencil and paper to answer the question.

Add or subtract. Use pattern blocks to help you.

a. $\frac{1}{6} + \frac{1}{6} =$

b. $\frac{1}{6} + \frac{1}{3} =$ _____

c. $\frac{5}{6} - \frac{4}{6} =$

d. $\frac{1}{3} - \frac{1}{6} =$

ANSWER:

- 27. Subtract. Use pattern blocks to help you.

$$\frac{1}{2} - \frac{1}{6} =$$

- a. $\frac{1}{3}$ b. 0 c. 1 d. $\frac{5}{12}$

ANSWER: a

Name: CI	class:	Date:
----------	--------	-------

28. Duse pencil and paper to answer the question.

Maria practiced her piano lesson for $\frac{2}{3}$ of an hour on Monday and $\frac{5}{6}$ of an hour on Tuesday. To figure out her total practice time, Maria wrote the following number model: $\frac{2}{3} + \frac{5}{6} = \frac{7}{9}$. Do you agree that Maria practiced $\frac{7}{9}$ of an hour? _____ Explain.

ANSWER: No; Sample answer: She added the denominators, which is not correct. She should have written a model with equivalent fractions with like denominators: $\frac{4}{6} + \frac{5}{6} = 1\frac{1}{2}$. She should have noticed that her answer should be greater than 1 hour since both fractions are greater than or equal to $\frac{1}{2}$.

Name:	Class:	Date:
-------	--------	-------

29. Due pencil and paper to answer the question.

Queen Barbara's Dilemma

- a. Queen Barbara has a problem. She wants to divide her land among her
- 4 daughters. She wants her oldest to get $\frac{1}{3}$ of the land and her younger daughters to each get $\frac{1}{4}$ of the land.

Can she do it? Explain your answer.

b. After thinking about it, Queen Barbara decides to keep $\frac{1}{2}$ of her land and have her 4 children divide the other $\frac{1}{2}$. She still wants the oldest daughter to get more land than her sisters. Think of a way to use fractions to divide the land.

Explain your answer.

- ANSWER: **a.** No she cannot do it. If she gives her oldest daughter $\frac{1}{3}$ of the land, there is only $\frac{2}{3}$ left. If each of her younger daughters got $\frac{1}{4}$, that would be $\frac{3}{4}$. Since $\frac{3}{4}$ is greater than $\frac{2}{3}$, there is not enough land left.
 - **b.** If she gave her oldest daughter $\frac{1}{2}$ of what she wants to give away, that's $\frac{1}{4}$ of her land. That leaves $\frac{1}{4}$ for her other 3 daughters. If she gives her other 3 daughters all the same amount, they would each get $\frac{1}{12}$ of her land.